
Automatic Analysis of Malware Behavior
using Machine Learning

Konrad Rieck1, Philipp Trinius2, Carsten Willems2, and Thorsten Holz2,3

1 Berlin Institute of Technology, Germany
2 University of Mannheim, Germany

3 Vienna University of Technology, Austria

This is a preprint of an article published in the Journal of Computer Security,

IOS Press, http://www.iospress.nl, 2011.

Abstract

Malicious software—so called malware—poses a major threat to the security of com-
puter systems. The amount and diversity of its variants render classic security defenses
ineffective, such that millions of hosts in the Internet are infected with malware in the
form of computer viruses, Internet worms and Trojan horses. While obfuscation and
polymorphism employed by malware largely impede detection at file level, the dy-
namic analysis of malware binaries during run-time provides an instrument for charac-
terizing and defending against the threat of malicious software.

In this article, we propose a framework for the automatic analysis of malware behav-
ior using machine learning. The framework allows for automatically identifying novel
classes of malware with similar behavior (clustering) and assigning unknown malware
to these discovered classes (classification). Based on both, clustering and classification,
we propose an incremental approach for behavior-based analysis, capable of process-
ing the behavior of thousands of malware binaries on a daily basis. The incremental
analysis significantly reduces the run-time overhead of current analysis methods, while
providing accurate discovery and discrimination of novel malware variants.

1 Introduction

Malicious software, referred to as malware, is one of the major threats on the Internet today.
A plethora of malicious tools, ranging from classic computer viruses to Internet worms
and bot networks, targets computer systems linked to the Internet. Proliferation of this
threat is driven by a criminal industry which systematically comprises networked hosts
for illegal purposes, such as distribution of spam messages or gathering of confidential
data (see Franklin et al., 2007; Holz et al., 2009). Unfortunately, the increasing amount
and diversity of malware render classic security techniques, such as anti-virus scanners,
ineffective and, as a consequence, millions of hosts in the Internet are currently infected
with malicious software (Microsoft, 2009; Symantec, 2009).

1

To protect from the rapid propagation of malware in the Internet, developers of anti-
malware software heavily rely on the automatic analysis of novel variants for designing
corresponding defense measures. The automatic analysis of malware, however, is far from
a trivial task, as malware writers frequently employ obfuscation techniques, such as binary
packers, encryption, or self-modifying code, to obstruct analysis. These techniques are es-
pecially effective against static analysis of malicious binaries (e.g., Linn and Debray, 2003;
Christodorescu and Jha, 2003; Kruegel et al., 2005; Moser et al., 2007a; Preda et al., 2008). In
contrast to static techniques, dynamic analysis of binaries during run-time enables moni-
toring the behavior of malware, which is difficult to conceal and often indicative for ma-
licious activity. Hence, a substantial amount of research has focused on development of
tools for collection and monitoring of malware (e.g., Pouget et al., 2005; Leita et al., 2006;
Bächer et al., 2006; Bayer et al., 2006a,b; Willems et al., 2007; Lanzi et al., 2009).

While monitoring binaries during run-time provides means for studying the behavior
of malicious software, it is by itself not sufficient to alleviate the threat of malware prolif-
eration. What is needed is the ability to automatically analyze the behavior of malware bi-
naries, such that novel strains of development can be efficiently identified and mitigated.
Two concepts for such automatic analysis of behavior based on machine learning tech-
niques have been recently proposed: (a) clustering of behavior, which aims at discovering
novel classes of malware with similar behavior (Bailey et al., 2007; Bayer et al., 2009a) and
(b) classification of behavior, which enables assigning unknown malware to known classes
of behavior (Lee and Mody, 2006; Rieck et al., 2008). Previous work has studied these
concepts as competing paradigms, where either one of the two has been applied using
different algorithms and representations of behavior.

In this article, we argue that discovery of novel malware classes (clustering) and dis-
crimination between known classes (classification) complement each other and are both
indispensable for efficient and effective malware analysis. We thus propose a framework
for the automatic analysis of malware behavior jointly using clustering and classification.
In particular, our paper makes the following major contributions:

– Scalable clustering and classification. We propose a mapping of monitored behavior to
a vector space, such that behavioral patterns are efficiently accessible to means of
machine learning. To attain scalable computation with thousands of vectors, we in-
troduce an approximation using prototype vectors which is applicable to clustering
as well as classification techniques.

– Incremental analysis of malware behavior. By combining clustering and classification,
we devise an incremental approach to behavior-based analysis capable of processing
the behavior of thousands of malware binaries on a daily basis. This incremental
analysis significantly reduces the run-time and memory overhead of batch analysis
methods, while providing accurate discovery of novel malware.

– Extensive evaluation with real malware. In a comparative evaluation, we demonstrate
the efficacy of our framework which outperforms state-of-the-art analysis methods.
Empirically, the incremental analysis reduces memory requirements by 94% and
yields a speed-up factor of 4—ultimately enabling processing 33,000 reports of mal-
ware behavior in less than 25 minutes.

2

Although the proposed analysis framework does not generally eliminate the threat
of malicious software, it provides a valuable instrument for timely development of anti-
malware products, capable of automatically and efficiently characterizing novel breeds of
malware development on a regular basis.

The rest of this article is organized as follows: Our analysis framework for malware
behavior is introduced in Section 2 including feature extraction, machine learning tech-
niques, and incremental analysis of behavior. An empirical evaluation of the framework
using data from a vendor of anti-malware products is presented Section 3. We discuss
related work in Section 4 and conclude this article in Section 5.

2 Automatic Analysis of Malware Behavior

Malicious software is characterized by complex and diverse behavior, ranging from simple
modifications of system resources to advanced network activity. Malware variants of the
same family, however, share common behavioral patterns, such as the usage of specific
mutexes or modifications of particular system files. We aim to exploit these shared patterns
for automatic analysis and propose a framework for clustering and classifying malware
based on their behavior. A schematic overview of our analysis framework is depicted in
Figure 1. Its basic analysis steps are summarized in the following.

1. Our framework proceeds by first executing and monitoring malware binaries in a
sandbox environment. Based on the performed operations and actions—in terms of
system calls—a sequential report of the monitored behavior is generated for each
binary, where system calls and their arguments are stored in a representation specif-
ically tailored to behavior-based analysis (Section 2.1).

2. The sequential reports are then embedded in a high-dimensional vector space, where
each dimension is associated with a behavioral pattern, a short sequence of observed
instructions. In this vectorial representation, the similarity of behavior can be as-
sessed geometrically, which allows for designing intuitive yet powerful clustering
and classification methods (Section 2.2).

3. Machine learning techniques for clustering and classification are then applied to the
embedded reports for identifying novel and known classes of malware. Efficient
computation of both analysis techniques is realized using prototype vectors which
subsume larger groups of reports with similar behavior and thereby provide an ef-
fective approximation to exact analysis (Section 2.3).

4. By alternating between clustering and classification steps, the embedded behavior of
malware can be analyzed incrementally, for example, on a daily basis. First, behavior
matching known malware classes is identified using prototype vectors of previously
discovered clusters. Then reports with unidentified behavior are clustered for dis-
covery of novel malware classes (Section 2.4).

In the following sections we discuss these individual steps and the corresponding tech-
nical background in more detail—providing examples of monitored behavior, describing
its vectorial representation, and explaining the applied clustering and classification meth-
ods as well as their incremental application.

3

Prototype
extraction

Classification
using prototypes

Clustering using
prototypes

Classified
reports

Clustered
reports

Prototypes of
classes

Embedding
of behavior

Monitoring
of behavior

Malware
binaries

Figure 1: Schematic overview of analysis framework. Incoming reports of malware behav-
ior are classified to known classes or grouped into novel classes of behavior. Prototypes
extracted for clustering are fed back to classification for incremental analysis.

2.1 Monitoring of Malware Behavior

A prerequisite for behavior-based analysis is the efficient monitoring of malware behavior
as well as a representation of this monitored behavior suitable for accurate analysis. In this
section, we present the sandbox technique employed in our framework and describe the
underlying representation of behavior denoted as malware instruction set.

2.1.1 Malware Sandboxes

For monitoring the behavior of executable binaries, multiple different methods exist from
which the majority is based on the interception of system calls (e.g., Bayer et al., 2006a,b;
Willems et al., 2007; Dinaburg et al., 2008). In contrast to code analysis, where the binary to
be analyzed is disassembled or debugged, the actual code of the file is completely ignored
under behavior-based analysis. Instead, the binary is seen as a black box and executed in a
controlled environment. This environment is set up in a way, in which all system interac-
tion of the malware is intercepted. By detouring system calls, the sandbox can inspect—and
optionally modify—all input parameters and return values of system calls during run-time
of the malware binary (Hunt and Brubacker, 1999).

This interception can be realized on different levels, ranging from a bird’s eye view in
out-of-system hypervisor monitoring down to in-process monitoring realized via dynamic
code instrumentation or static patching. For our analysis, we employ the monitoring tool
CWSandbox which intercepts system calls via inline function hooking. The tool overwrites
the prologue of each system call with an unconditional jump to a hook function. This func-
tion first writes the system call and its arguments to a log file and then proceeds to execute
the intercepted operation with all this detouring transparent to the caller. A detailed dis-
cussion of this technique is provided by Willems et al. (2007).

2.1.2 The Malware Instruction Set

The predominant format for representation of monitored behavior are textual and XML-
based reports, for example, as generated by the malware sandboxes Anubis (Bayer et al.,
2006b) and CWSandbox (Willems et al., 2007). While such formats are suitable for a human

4

analyst or computation of general statistics, they are inappropriate for automatic analysis
of malware behavior. The structured and often aggregated textual reports hinder applica-
tion of machine learning methods, as the true sequences of observed behavioral patterns
are not directly accessible. Moreover, the complexity of textual representations increases
the size of reports and thus negatively impacts run-time of analysis algorithms.

To address this problem and optimize processing of reports, we propose a special rep-
resentation of behavior denoted as malware instruction set (MIST) inspired from instruction
sets used in processor design. In contrast to regular formats, the monitored behavior of
a malware binary is described as a sequence of instructions, where individual execution
flows of threads and processes are sequentially appended to a single report. Each in-
struction in this format encodes one monitored system call and its arguments using short
numeric identifiers, such as ‘03 05’ for the system call ‘move file’. The system call ar-
guments are arranged in blocks at different levels, reflecting behavior with different degree
of specificity. We denote these levels as MIST levels. Moreover, variable-length arguments,
such as file and mutex names, are represented by index numbers, where a global mapping
table is used to translate between the original contents and the index numbers.

 CATEGORY OPERATION | ARGBLOCK1 | ARGBLOCK2 | ... | ARGBLOCKN

Level 1

Level 2

Level 3

Figure 2: Schematic overview of a MIST instruction. The field CATEGORY encodes the category
of system calls where the field OPERATION reflects a particular system call. Arguments are
represent as blocks by ARGBLOCKN .

Figure 2 shows the basic structure of a MIST instruction. The first level of the instruc-
tions corresponds to the category and name of a monitored system call. As an example,
‘03 05’ corresponds to the category ‘filesystem’ (03) and the system call ‘move file’

(05). The following levels of the instruction contain different blocks of arguments, where
the specificity of the blocks increases from left to right. The main idea underlying this
rearrangement is to move “noisy” elements, such as process and thread identifiers, to the
end of an instruction, whereas stable and discriminative patterns, such as directory and
mutex names, are kept at the beginning. Thus, the granularity of behavior-based analysis
can be adapted by considering instructions only up to a certain level. As a result, malware
sharing similar behavior may be even discovered if minor parts of the instructions differ,
for instance, if randomized file names are used. A detailed description of MIST and the
arrangement of argument blocks is provided by Trinius et al. (2010).

As an example, Figure 3 compares the original XML representation of CWSandbox and
the novel MIST format. The operation move file is presented with respective arguments.
Although the formats strongly differ in visual appearance, they carry the same informa-
tion. The order of arguments in the MIST instruction, however, is rearranged, where the
path names and file extensions are covered in level 2 and the base names of the files in

5

level 3. Moreover, the MIST instruction is significantly shorter than the XML representa-
tion due to the application of numeric identifiers and index numbers.

<move_file srcfile="c:\foo.exe" dstfile="c:\windows\system32\kernel32.dll"

filetype="file" creationdistribution="CREATE_NEW" />

(a) CWSandbox representation of system call

03 05 | 01 000000 01 00006ce5 000066fc 00006b2c 002e6d6c | 00006d5f 071c94bc

move_file create flags "exe" "c:\" "dll" "c:\w..." "foo" "kernel"

(b) MIST representation of system call

Figure 3: Feature representations of a system call (Windows API call). The CWSandbox for-
mat represents the system call as an attributed XML element, while the malware instruction
set (MIST) represents it as a structured instruction.

2.2 Embedding of Malware Behavior

The proposed feature representation enables an expressive characterization of behavior,
where each execution of a binary is represented as a sequential report of MIST instructions.
Typical behavioral patterns of malware, such as changing registry keys or modifying sys-
tem files, are reflected in particular subsequences in these reports. Yet, this representation
is still not suitable for application of efficient analysis techniques, as these usually operate
on vectors of real numbers. To tackle this issue, we introduce a technique for embedding
behavior reports in a vector space which is inspired by concepts from natural language
processing and host-based intrusion detection (see Salton et al., 1975; Damashek, 1995;
Forrest et al., 1996; Lee et al., 1997).

2.2.1 Embedding using Instruction Q-grams

In an abstract view, a report x of malware behavior corresponds to a simple sequence of
instructions. To characterize the contents of this sequence, we move a fixed-length win-
dow over the report, where we consider a subsequence of length q at each position. The
resulting “snippets” of instructions, referred to as instruction q-grams, reflect short behav-
ioral patterns and thus implicitly capture some of the underlying program semantic. For
constructing an embedding of reports using instruction q-grams, we consider the set S of
all possible q-grams, defined as follows

S = {(a1, . . . , aq) | ai ∈ A with 1 ≤ i ≤ q}, (1)

whereA denotes the set of all possible instructions. Note that depending on the considered
MIST level, the granularity of A and S may range from plain system calls (level = 1) to
full instructions covering different blocks of system call arguments (level > 1).

6

Using the set S , a report x of malware behavior can be embedded in an |S|-dimensional
vector space, where each dimension is associated with one instruction q-gram and thus a
short behavioral pattern. The corresponding embedding function ϕ resembles an indicator
for the presence of instruction q-grams and can be formally defined as follows

ϕ(x) = (ϕs(x))s∈S with ϕs(x) =

{
1 if report x contains q-grams s,

0 otherwise.
(2)

As an example, let us consider the artificial report x = ‘1|A 2|A 1|A 2|A’ containing
only two simplified instructions A = {1|A, 2|A}. If we consider instruction q-grams with
q = 2 for characterizing the contents of x, the vector ϕ(x) looks as follows

ϕ(‘1|A 2|A 1|A 2|A’) 7−→

0
1
1
0

‘1|A 1|A’

‘1|A 2|A’

‘2|A 1|A’

‘2|A 2|A’.

(3)

In contrast to this simple example, the vector space induced by real instructions ex-
hibits a huge dimension. For example, for 2-grams with MIST level 2, a set of 1,000 reports
easily exceeds over 100, 000 unique q-grams and hence is embedded in a vector space with
over 100, 000 dimensions. At the first glance, computing and comparing vectors in such
high-dimensional spaces seems infeasible. The number of instruction q-grams contained
in a single report, however, is linear in its length. That is, a report x containing m instruc-
tions comprises at most (m− q) different q-grams. Consequently, only (m− q) dimensions
are non-zero in the feature vector ϕ(x)—irrespective of the actual dimension of the vector
space. This sparsity of ϕ(x) can be exploited to derive linear-time methods for extrac-
tion and comparison of embedded reports, which ultimately enables efficient analysis of
behavior as demonstrated in Section 3. A detailed discussion of linear-time methods for
analysis of embedded sequences is provided by Rieck and Laskov (2008).

The number of non-zero dimensions in the vector space also depends on other factors,
such as the redundancy of behavior, the considered alphabet, or the length of reports.
In practice, the length of reports dominates these factors and introduces an implicit bias,
rendering comparison of small and large reports problematic. To compensate this bias, we
introduce a normalized embedding function

ϕ̂(x) =
ϕ(x)
||ϕ(x)|| (4)

that scales each vector ϕ(x) such that its vector norm equals one. As a result of this nor-
malization, a q-gram counts more in a report that has fewer distinct q-grams. That is,
changing a constant amount of instructions in a report containing repetitive behavior has
more impact on the embedded vector than in a report comprising several different behav-
ioral patterns. This type of normalization is widely used in the domain of information
retrieval for comparing text documents, where it is usually applied as part of the cosine
similarity measure (see van Rijsbergen, 1979).

7

2.2.2 Comparing Embedded Reports

The embedding of reports in vector spaces enables expressing the similarity of behavior
geometrically, which allows for designing intuitive yet powerful analysis techniques. To
assess the geometric relations between embedded reports, we define a distance d by

d(x, z) = ||ϕ̂(x)− ϕ̂(z)|| =
√

∑
s∈S

(ϕ̂s(x)− ϕ̂s(z))2 (5)

which compares the behavior of the embedded reports x and z, and corresponds to the
Euclidean distance in R|S|. The values of d range from d(x, z) = 0 for identical behavior
to d(x, z) =

√
2 for maximally deviating reports due to the normalization.

Access to the geometry of the induced vector space enables grouping and discrimi-
nating embedded reports effectively by means of machine learning. Malware variants
originating from the same class share several instruction q-grams in their behavior and
thus lie close to each other, whereas reports from different families yield large distances
and are scattered in the vector space. In comparison to related approaches using distances
(e.g., Lee and Mody, 2006; Bailey et al., 2007), the proposed embedding gives rise to an
explicit vector representation, where the contribution of each q-gram can be traced back to
individual behavioral patterns for explaining the decisions made by analysis methods.

2.3 Clustering and Classification

Based on the embedding of reports in a vector space, we apply techniques of machine
learning for the analysis of behavior. In particular, we study two learning concepts for
analysis: Clustering of behavior, which enables identifying novel classes of malware with
similar behavior and classification of behavior, which allows to assign malware to known
classes of behavior. To keep abreast of the increasing amount of malware in the wild,
clustering and classification methods are required to process thousands of reports on a
daily basis. Unfortunately, most learning methods scale super-linear in the number of
input data and thus are not directly applicable for malware analysis.

To address this problem, we propose an approximation for clustering and classifica-
tion techniques inspired by the work of Bayer et al. (2009a). A set of malware binaries
often contains similar variants of the same family which exhibit almost identical behav-
ioral patterns. As a consequence, the embedded reports form dense clouds in the vector
space. We exploit this dense representation by subsuming groups of similar behavior us-
ing prototypes—reports being typical for a group of homogeneous behavior. By restricting
the computation of learning methods to prototypes and later propagating results to all
embedded data, we are able to accelerate clustering as well as classification techniques.
The extracted prototypes correspond to regular reports and thus can be easily inspected
by a human analyst, whereas the approximation of locality sensitive hashing employed by
Bayer et al. (2009a) is opaque, providing almost no insights into groups of behavior.

Figure 4(a) illustrates the concept of prototypes for representing groups of similar vec-
tors on an artificial data set. The figure shows roughly 100 vectors arranged in three clus-
ters which are effectively represented using six prototypes (indicated by black dots). Note
that the prototypes do not necessary coincident with clusters. For example, the clusters in
the lower and right part of Figure 4(a) are each represented by two prototype vectors. As

8

demonstrated in Section 3, prototypes allow for run-time improvements over exact meth-
ods while inducing a minimal approximation error.

Data points
Prototypes

(a) Prototypes

Cluster 1
Cluster 2
Cluster 3

(b) Clustering

Decision boundary

(c) Classification

Figure 4: Behavior analysis using prototypes: (a) prototypes of data, (b) clustering using pro-
totypes, and (c) classification using prototypes. Black lines in Figure 4(b) indicate prototypes
joined by linkage clustering. Black lines in Figure 4(c) represent the class decision boundary.

2.3.1 Prototype Extraction

Extracting a small yet representative set of prototypes from a data set is not a trivial task.
Most approaches for prototype extraction rest on clustering (Bezdek and Kuncheva, 2001)
or super-linear computations (Harmeling et al., 2006), and thus are inappropriate as basis
for efficient approximation. Even worse, the task of finding an optimal set of prototypes
can be shown to be NP-hard (Garey and Johnson, 1979). Fortunately, we can adapt a
linear-time algorithm by Gonzàlez (1985) which provably determines a set of prototypes
only twice as large as the optimal solution. The algorithm is sketched in Algorithm 1.

Algorithm 1 Prototype extraction
1: prototypes← ∅
2: distance[x]← ∞ for all x ∈ reports
3: while max(distance) > dp do
4: choose z such that distance[z] = max(distance)
5: for x ∈ reports and x 6= z do
6: if distance[x] > ||ϕ̂(x)− ϕ̂(z)|| then
7: distance[x]← ||ϕ̂(x)− ϕ̂(z)||
8: add z to prototypes

The algorithms proceeds by iteratively selecting prototypes from a set of reports. The
first prototype is either fixed or chosen at random. During each run, the distance from the
current set of prototypes to the remaining embedded reports is computed (line 5–7). The
farthest report is chosen as new prototype, such that the data set is iteratively covered by a
web of prototypes (line 4). This procedure is repeated until the distance from each vector
to its nearest prototype is below the parameter dp (line 3).

9

The run-time complexity of this algorithm is O(kn) where n is the number of reports
and k the number of prototypes. Given that dp is reasonably chosen, the algorithm is linear
in the number of reports, as k solely depends on the distribution of data. If no such dp can
be determined though, the overall iterations can still be restricted by a fixed limit k.

2.3.2 Clustering using Prototypes

Clustering refers to a basic technique of machine learning which aims at partitioning a
given data set into meaningful groups, so called clusters. The partitioning is determined,
such that objects within one cluster are similar to each other, whereas objects in different
clusters are dissimilar. Clustering enables discovery of structure in unknown data and
thus has been employed in a large variety of applications (see Anderberg, 1973).

Clustering for analysis of malware behavior has been proposed by Bailey et al. (2007)
and later refined by Bayer et al. (2009a). We pursue this line of research and study the
standard technique of hierarchical clustering (Duda et al., 2001) for determining groups of
malware with similar behavior. In contrast to previous work, we base our analysis on
the concept of prototypes. That is, first clusters of prototypes are determined and then
propagated to the original data. An example for such clustering is illustrated in Figure 4(b),
where black lines indicate prototypes grouped into clusters. A corresponding clustering
algorithm is presented in Algorithm 2.

Algorithm 2 Clustering using prototypes
1: for z, z′ ∈ prototypes do
2: distance[z, z′]← ||ϕ̂(z)− ϕ̂(z′)||
3: while min(distance) < dc do
4: merge clusters z, z′ with minimum distance[z, z′]
5: update distance using complete linkage

6: for x ∈ reports do
7: z← nearest prototype to x
8: assign x to cluster of z

9: reject clusters with less than m members

Starting with each prototype being an individual cluster, the algorithm proceeds by
iteratively determining and merging the nearest pair of clusters (line 4). This procedure
is terminated if the distance between the closest clusters is larger than the parameter dc.
To compute distances between clusters, the algorithm considers the maximum distance
of their individual members—a standard technique of hierarchical clustering referred to
as complete linkage (see Anderberg, 1973; Duda et al., 2001). Once a clustering has been
determined on the prototypes, it is propagated to the original reports (line 6–8). Moreover,
clusters with fewer than m members are rejected and kept for later incremental analysis,
as discussed in Section 2.4.

The algorithm has a run-time complexity of O(k2 log k + n), where n is the number of
reports and k the number of prototypes. In comparison to exact hierarchical clustering
with a run-time of O(n2 log n), the approximation provides a speed-up factor of

√
n/k.

10

2.3.3 Classification using Prototypes

We next consider classification, which allows to learn a discrimination among different
classes of objects. Classification methods require a learning phase prior to application,
where a model for discrimination is inferred from a data set of labeled objects. This model
can then be applied for predicting class labels on unseen data. As many real-world appli-
cation fall into this concept of learning, a large body of research exists on designing and
applying classification methods (e.g., Mitchell, 1997; Duda et al., 2001; Müller et al., 2001;
Shawe-Taylor and Cristianini, 2004)

The application of classification for the analysis of malware behavior has been studied
by Lee and Mody (2006) and Rieck et al. (2008). In both approaches, the behavior of un-
known malware is classified to known classes of behavior, where the initial training data
is labeled using anti-virus scanners. Unfortunately, most anti-virus products suffer from
inconsistent and incomplete labels (see Bailey et al., 2007) and do not provide sufficiently
accurate labels for training. As a remedy, we employ the malware classes discovered by
clustering as labels for training and thereby learn a discrimination between known clusters
of malware behavior. As these clusters are represented by prototypes in our framework,
we again make use of approximation to accelerate learning. As an example, Figure 4(c)
shows the decision boundary for classification determined using prototypes of clusters. A
corresponding classification algorithm is presented in Algorithm 3.

Algorithm 3 Classification using prototypes
1: for x ∈ reports do
2: z← nearest prototype to x
3: if ||ϕ̂(z)− ϕ̂(x)|| > dr then
4: reject x as unknown class
5: else
6: assign x to cluster of z

For each report x, the algorithm determines the nearest prototype of the clusters in
the training data (line 1–2). If the nearest prototype is within the radius dr, the report
is assigned to the respective cluster, whereas otherwise it is rejected and hold back for
later incremental analysis (line 4–6). This procedure is referred to as nearest prototype clas-
sification and resembles an efficient alternative to costly k-nearest neighbor methods (see
Bezdek and Kuncheva, 2001; Duda et al., 2001)

The naive run-time of the algorithm is O(kn), as for each of the n reports the nearest
prototype needs to be determined from the k prototypes in the training data. By maintain-
ing the prototypes in specialized tree structures, the run-time complexity can be reduced to
O(n log k) in the worst-case (Omohundro, 1989; Beygelzimer et al., 2006). Nevertheless, for
our analysis framework, we favor the naive implementation over specialized algorithms,
as it can be effectively parallelized and hence provides better run-time performance on
common multi-core systems.

11

2.4 Incremental Analysis

Based on a joint formulation of clustering and classification, we devise an incremental
approach to analysis of malware behavior. While previous work has been restricted to
batch analysis, we propose to process the incoming reports of malware behavior in small
chunks, for example on a daily basis. To realize an incremental analysis, we need to keep
track of intermediate results, such as clusters determined during previous runs of the al-
gorithm. Fortunately, the concept of prototypes enables us to store discovered clusters in
a concise representation and, moreover, provides a significant speed-up if used for classi-
fication. Hence, we construct our incremental analysis around prototype-based clustering
and classification as illustrated in Algorithm 4.

Algorithm 4 Incremental Analysis
1: rejected← ∅, prototypes← ∅
2: for reports← data source ∪ rejected do
3: classify reports to known clusters using prototypes . see Algorithm 3
4: extract prototypes from remaining reports . see Algorithm 1
5: cluster remaining reports using prototypes . see Algorithm 2
6: prototypes← prototypes ∪ prototypes of new clusters
7: rejected← rejected reports from clustering

The reports to be analyzed are received from a data source such as a set of honeypots or
a database of collected malware in regular intervals. In the first processing phase, the in-
coming reports are classified using prototypes of known clusters (line 3). Thereby, variants
of known malware are efficiently identified and filtered from further analysis. In the fol-
lowing phase, prototypes are extracted from the remaining reports and subsequently used
for clustering of behavior (line 4–5). The prototypes of the new clusters are stored along
with the original set of prototypes, such that they can be applied in a next run for clas-
sification. This procedure—alternating between classification and clustering—is repeated
incrementally, where the amount of unknown malware is continuously reduced and the
prevalent classes of malware are automatically discovered.

The number of reports available during one incremental run, however, may be insuffi-
cient for determining all clusters of malware behavior. For example, infrequent malware
variants may only be represented by few samples in the embedding space. To compensate
for this lack of information, we reject clusters with fewer than m members and feed the
corresponding reports back to the data source. Consequently, infrequent malware is ag-
glomerated until sufficient data is available for clustering. As demonstrated in Section 3.4,
this procedure ensures an accurate discovery of malware classes, even if not all relevant
information is available during the first incremental runs.

The run-time of the incremental algorithm is O(nm + k2 log k) for a chunk of n reports,
where m is the number of prototypes stored from previous runs and k the number of pro-
totypes extracted in the current run. Though the run-time complexity is quadratic in k,
the number of extracted prototypes during each run remains constant for chunks of equal
size and distribution. Thus, the complexity of incremental analysis is determined by m,
the number of prototypes for known malware classes, similar to the linear complexity of
signature matching in anti-malware products.

12

3 Experiments & Application

We proceed to an empirical evaluation of the proposed analysis framework for malware
behavior. First, we evaluate and calibrate the individual components of the framework
on a reference data set (Section 3.2). We then compare the prototype-based clustering
and classification to state-of-the-art analysis methods (Section 3.3). Finally, we study the
efficacy and run-time performance of our framework in a real application with malware
obtained from a vendor of anti-malware products (Section 3.4).

3.1 Evaluation Data

For our experiments we consider two data sets of malware behavior: A reference data set
containing known classes of malware which is used to evaluate and calibrate our frame-
work and an application data set which comprises unknown malware obtained from the
security center of an anti-malware vendor.

Reference data set. The reference data set is extracted from a large database of malware
binaries maintained at the CWSandbox web site1. The malware binaries have been col-
lected over a period of three years from a variety of sources, such as honeypots, spam
traps, anti-malware vendors and security researchers. From the overall database, we se-
lect binaries which have been assigned to a known class of malware by the majority of
six independent anti-virus products. Although anti-virus labels suffer from inconsistency,
we expect the selection using different scanners to be reasonable consistent and accurate.
To compensate for the skewed distribution of classes, we discard classes with less than 20
samples and restrict the maximum contribution of each class to 300 binaries. The selected
malware binaries are then executed and monitored using CWSandbox, resulting in a total
of 3,133 behavior reports in MIST format (Table 1).

Malware class # Malware class #
a ADULTBROWSER 262 m PORNDIALER 98
b ALLAPLE∗ 300 n RBOT 101
c BANCOS 48 o ROTATOR∗ 300
d CASINO 140 p SALITY 85
e DORFDO 65 q SPYGAMES 139
f EJIK 168 r SWIZZOR 78
g FLYSTUDIO 33 s VAPSUP 45
h LDPINCH 43 t VIKINGDLL 158
i LOOPER 209 u VIKINGDZ 68
j MAGICCASINO 174 v VIRUT 202
k PODNUHA∗ 300 w WOIKOINER 50
l POSION 26 x ZHELATIN 41

Table 1: Reference data set of 24 malware classes. The data set contains 3,133 reports of
malware behavior. Frequent malware has been restricted to 300 samples (indicated by ∗).

1CWSandbox—Behavior-based Malware Analysis, http://www.mwanalysis.org

13

Application data set. While the reference data set covers known malware for evalua-
tion and calibration, the application data set specifically contains unknown malware. The
data set consists of seven chunks of malware binaries obtained from the anti-malware
vendor Sunbelt Software. The binaries correspond to malware collected during seven con-
secutive days in August 2009 and originate from a variety of sources, such as deployed
anti-malware scanners, exchange with other vendors or malware honeypots. Sunbelt Soft-
ware uses these very samples to create and update signatures for their VIPRE anti-malware
product as well as for their security data feed ThreatTrack. Similar to the reference data set,
the malware binaries in each chunk are executed and monitored using CWSandbox, re-
sulting in a total of 33,698 behavior reports in MIST format. Statistics for the data set and
the characteristics of the contained behavior reports are provided in Table 2.

Data set description
Collection period August 1–7, 2009
Collection location Sunbelt Software
Data set size (kilobytes) 21,808,644
Number of reports 33,698
Data set statistics min. avg. max.
Reports per day 3,760 4,814 6,746
Instructions per report 15 11,921 103,039
Size per report (kilobytes) 1 647 5,783

Table 2: Application data set of 33,698 reports. The data set has been collected at the anti-
malware vendor Sunbelt Software during August 1–7, 2009.

3.2 Evaluation of Components

As the first experiment, we evaluate and calibrate the components of our framework,
namely the prototype extraction, the clustering, and the classification. To assess the per-
formance of these components, we employ the evaluation metrics of precision and recall.
The precision P reflects how well individual clusters agree with malware classes and the
recall R measures to which extent classes are scattered across clusters. Formally, we define
precision and recall for a set of clusters C and a set of malware classes Y as

P =
1
n ∑

c∈C
#c and R =

1
n ∑

y∈Y
#y (6)

where #c is the largest number of reports in cluster c sharing the same class and #y the
largest number of reports labeled y within one cluster. If each report is represented as a
single cluster, we obtain P = 1 with low recall, whereas if all reports fall into the same
cluster, we have R = 1 with low precision. Consequently, we seek an analysis setup which
maximizes precision and recall. To this end, we consider an aggregated performance score
for our evaluation, denoted as F-measure,

F =
2 · P · R
P + R

(7)

14

which combines precision and recall (van Rijsbergen, 1979). A perfect discovery of classes
yields F = 1, whereas either a low precision or recall result in a low F-measure.

As the first component of our framework, we evaluate the performance of prototype
extraction. That is, we consider the precision of extracted prototypes on the reference
data set in relation to the attained reduction of reports (compression ratio). The recall is
irrelevant in this setting, as individual prototypes are not required to represent complete
malware classes. To obtain different sets of prototypes we vary the distance parameter
dp in Algorithm 1. Moreover, we also evaluate different settings for embedding reports,
where we choose the length q of instruction q-grams from the set {1, 2, 3, 4}.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Maximum distance to prototypes

P
re

ci
si

on
 /

C
om

pr
es

si
on

P: 0.996
C: 2.9%

Precision
Compression

(a) MIST level 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

Maximum distance to prototypes

P
re

ci
si

on
 /

C
om

pr
es

si
on

P: 0.995
C: 7.0%

Precision
Compression

(b) MIST level 2

Figure 5: Prototype extraction on reference data. The precision and compression are shown
for varying prototype threshold dp (Maximum distance to prototypes).

Figure 5 shows results for the evaluation of prototype extraction for MIST level 1 and 2
averaged over 10 runs, where the initial prototype is selected randomly. The results are
presented for a q-gram length of q = 2 which provided the best balance between precision
and compression. For the optimal setup, the prototypes yield a precision of 0.99 while
compressing the corpus of reports to 2.9% and 7.0%, respectively. The average standard
deviation between the experimental runs is below 1.5% and the reported precision can be
considered statistical significant. Hence, we calibrate the distance parameter dp according
to this setup and fix q = 2 in the following experiments.

We proceed to evaluate the performance of the proposed clustering using prototypes.
For this experiment, we compute the F-measure for the prototype-based clustering and
an implementation of regular hierarchical clustering on the reference data set. We vary
the distance parameter dc from 0 to

√
2 of Algorithm 2 to obtain clusterings with different

granularity and number of clusters.
Results for the evaluation of clustering are presented in Figure 6 for MIST level 1 and 2.

The performance is again averaged over 10 runs with random initialization of prototype
extraction. The accuracy of both methods varies with the distance parameter dc where
prototype-based and regular clustering perform almost identical. The F-measure increases
with the parameter dc as long as similar reports are correctly grouped into clusters and
finally reaches a plateau between 0.6 and 1.1. Both techniques attain an F-measure of

15

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

F: 0.950

F
−

m
ea

su
re

Minimum distance between clusters

Clustering using prototypes
Regular clustering

(a) MIST level 1

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

F: 0.936

F
−

m
ea

su
re

Minimum distance between clusters

Clustering using prototypes
Regular clustering

(b) MIST level 2

Figure 6: Clustering performance on reference data. The performance (F-measure) for clus-
tering using prototypes and regular clustering is presented for varying distance dc (Minimum
distance between clusters).

0.93 and 0.95, respectively, corresponding to a near perfect discovery of the 24 malware
classes in the reference data set. For the following experiments, we thus fix the parameter
dc accordingly. Note that, although both methods perform similarly, the prototype-based
clustering requires less than a tenth of the original reports for discovery of clusters.

In the third evaluation, we assess the performance of classification. As classification
is a supervised learning task involving a training phase, we randomly split the reference
data into a training and a testing partition over 10 runs and average results. Moreover, we
consider half of the malware classes as unknown in each run and do not provide instances
of these classes for training. Consequently, we consider two different F-measures:

Fk : The measure Fk is used for evaluating the classification of known classes. It is com-
puted as the regular F-measure in Equation (7) except that precision and recall are
only determined on the set of known classes.

Fu : The measure Fu is used for evaluating the rejection of unknown classes. It is calcu-
lated as in Equation (7) on all data instances; however, only two different decisions
are considered for determining precision and recall: rejection and no rejection.

Figure 7 shows results of this evaluation for MIST level 1 and 2. The F-measure for clas-
sification of known classes increases with the distance parameter dr, while the F-measure
for rejection of unknown classes decreases. The larger we choose the distance dr, that is,
the region around the prototypes, the better we can describe the known classes of mal-
ware. However, if the parameter dr is too large, unknown malware is incorrectly assigned
to prototypes of other malware classes. In the optimal setting an F-measure between 0.96
and 0.99 is obtained for both types of malware classes, resulting in a classification setup
suitable for discrimination of known classes as well as rejection of unknown variants for
subsequent clustering.

16

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

Maximum distance to prototypes

F
k
: 0.984 (known)

F
u
: 0.996 (unknown)

Known malware classes
Unknown malware classes

(a) MIST with level 1

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

Maximum distance to prototypes

F
k
: 0.979 (known)

F
u
: 0.967 (unknown)

Known malware classes
Unknown malware classes

(b) MIST with level 2

Figure 7: Classification performance on reference data. The performance (F-measure) for
classification of known malware classes and rejection of unknown malware classes is pre-
sented for varying rejection threshold dr (Maximum distance to prototypes).

3.3 Comparative Evaluation with State-of-the-Art

After evaluating and calibrating the individual components of our framework, we present
a comparative evaluation with state-of-the-art methods for analysis of malware behavior.
For clustering of behavior, we consider the method proposed by Bayer et al. (2009a) which
uses behavioral features from the Anubis sandbox for computing an approximate cluster-
ing using locality sensitive hash (LSH). For classification, we apply the method proposed
by Rieck et al. (2008) which learns a discrimination using support vector machines (SVM)
with XML features of monitored behavior. We follow the calibration procedure detailed
in the previous section for both analysis concepts and select optimal parameters for each
method accordingly.

Clustering methods F-measure
Clustering using prototypes with MIST level 1 0.950
Clustering using prototypes with MIST level 2 0.936
Clustering using LSH with Anubis features (Bayer et al., 2009a) 0.881
Classification methods Fk Fu

Classification using prototypes with MIST level 1 0.981 0.997
Classification using prototypes with MIST level 2 0.972 0.964
Classification using SVM with XML features (Rieck et al., 2008) 0.807 0.548

Table 3: Comparison of analysis methods on reference data set. The performance of analysis
(F-measure) is presented for clustering and classification. For classification the F-measure is
given individually for known malware classes (Fk) and unknown malware classes (Fu).

Result for the comparative evaluation are presented in Table 3 using the F-measure as
performance criteria. In both analysis settings the components of our framework outper-
form the related methods. The prototype-based clustering attains an F-measure of 0.95 for
MIST level 1 and 0.936 for level 2, while the method of Bayer et al. (2009a) reaches only

17

0.881. Similarly, our classification yields an F-measure of over 0.96, whereas the method
of Rieck et al. (2008) achieves 0.807 for classification of known malware and less than 0.55
for classification of unknown malware. This superior analysis performance of our frame-
work stems from the geometric formulation of clustering and classification, which directly
exploits the behavioral patterns provided by the sequential MIST representation.

It is necessary to note that the clustering of Bayer et al. (2009a) has been performed sep-
arately by courtesy of Vienna University of Technology. In particular, the malware binaries
have been executed six weeks after the generation of the respective MIST reports and thus
the monitored behavior is not strictly identical. As a consequence, differences in perfor-
mance may also result from the offset between monitoring dates. Still, the prototype-based
clustering yields improved F-measures for five of the 24 malware classes which are un-
likely to be all induced by the recording period.

3.4 An Application Scenario

Thus far our framework has been evaluated using the reference data set of known malware
samples. In practice, however, it is the discovery of unknown malware classes that renders
behavior-based analysis superior to related methods. Hence, we now turn to an applica-
tion scenario involving unknown malware. We apply the incremental analysis method
presented in Section 2.4 to the application data set, where we process one of the seven
daily chunks of malware per iteration. This setting reflects a typical scenario at an anti-
malware vendor: Incoming malware is analyzed for signature updates on a daily basis.

We fix the parameters of prototype extraction, clustering, and classification according
to the previous evaluation on the reference data set. The rejection threshold m in Algo-
rithm 2 is set to 10, that is, clusters with less than 10 members are initially rejected and
kept back for following iterations. Moreover, we restrict our analysis to MIST level 2, as
this granularity provides adequate accuracy while being resistant against simple evasion
attacks. Additionally, we employ a regular hierarchical clustering on the application data
set for comparison with the incremental analysis.

1 1−2 1−3 1−4 1−5 1−6 1−7
0

100

200

300

400

500

Data set size (days)

N
um

be
r

of
 c

lu
st

er
s

Rand: 0.99

Rand: 0.99

Rand: 0.99

Regular clustering
Incremental analysis

(a) Comparison with regular clustering

1 1−2 1−3 1−4 1−5 1−6 1−7
0

0.2

0.4

0.6

0.8

1

D
is

tr
ib

ut
io

n
of

 r
ep

or
ts

Data set size (days)

Clustered reports
Classified reports
Rejected reports

(b) Clustering-classification ratio

Figure 8: Evaluation of clustering on day 1–7 of application data set. Figure 8(a) compares
regular clustering and incremental analysis in terms of cluster number and Rand index. Fig-
ure 8(b) shows the clustering-classification ratio for the incremental analysis.

18

Figure 8 shows results for behavior-based analysis of the application data set, where
a comparison between incremental analysis and regular batch clustering is presented in
Figure 8(a). The differences between both approaches is marginal. Even when processing
all seven days of the application data set, both methods nearly determine the same number
of clusters. This result is confirmed when looking at the Rand index additionally provided
in Figure 8(a). The Rand index is a standard measure for comparison of clusterings, which
is 1 for identical and 0 for maximally different clusterings (Rand, 1971). For all iterations
of the incremental analysis, the Rand index is 0.99 between the clusterings and indicates
an almost perfect match of both analysis methods.

During incremental analysis each behavior report is either classified, clustered, or rejected.
Figure 8(b) shows the cumulative ratio of classified, clustered, and rejected reports for each
of the seven days in the application data set. The number of rejected reports continuously
decreases as more and more data is available for determining stable clusters. Furthermore,
the number of classified reports significantly increases after the initial iteration, such that
less data needs to be clustered and thus crucial run-time is saved.

These results demonstrate the advantage of combining clustering and classification in
an incremental analysis: While the discovered clusters are almost identical to a regular
batch approach, the processing of reports is shifted from costly clustering to more efficient
classification. Before presenting the gained run-time improvements in more detail, we
provide a discussion of the discovered malware classes from this experiment.

3.4.1 Evaluation of Malware Clusters

Results and statistics for the discovered clusters of malware are presented in Figure 9(a). A
total of 434 clusters is determined from the 33,698 malware binaries of the application data
set. The distribution of the cluster size decays exponentially, where the largest clusters
comprise up to 2,500 reports and on average a cluster contains 69 reports. Overall, the
reports are effectively represented using 1,805 prototypes, such that on average a cluster is
associated with only 4 prototypes, resulting in a compression ratio of 5.4%.

Figure 9(b) shows the ten largest clusters discovered by incremental analysis. As a
guideline for presentation of these clusters, we display the most frequent anti-virus label
within each cluster generated using Kaspersky Anti-Virus. As the corresponding malware
binaries have been unknown at the time of acquisition, we generate these labels with a
delay of 8 weeks to allow for updates of anti-virus signatures.

For each of the ten clusters, one anti-virus label is prevalent, which indicates the discov-
ery of consistent groups of behavior. For example, cluster 3 is mainly associated with the
file infector VIRUT and comprises typical behavior of this malware class, such as IRC bot
functionality on the channel ‘&virtu’. Cluster 8 entirely corresponds to the polymorphic
worm ALLAPLE and is characterized by typical behavioral patterns, such as the creation
of the file ‘urdvxc.exe’ and excessive ping scans. As a rather unexpected result, clus-
ter 4 is labeled NF (nothing found) and indeed contains benign behavior. Nevertheless,
all reports of this cluster correspond to self-extracting archives originating from tools like
WinZip and WinRAR, which also demonstrates the ability of our analysis framework to
discover classes of behavior—independent of malicious activity.

Apparently, there seems to be an inconsistency in the analysis, as the malware classes
BASUN and SWIZZOR are spread among different clusters. This seeming lack of accurate

19

Analysis statistics #
Analyzed reports 30,089 (89.3%)
→ by classification 22,472
→ by clustering 7,617
Rejected reports 3,609 (10.7%)
Number of clusters 434
Number of prototypes 1,805 (5.4%)
Cluster size 69 ± 217
Prototypes per cluster 4 ± 4

(a) Statistics of incremental analysis

1 2 3 4 5 6 7 8 9 10 ...
0

500

1000

1500

2000

2500

3000

3500

 Basun
 Basun

 Virut
 NF

 AutoIt
 VB

 Basun
 Allaple

 Swizzor
 Swizzor

Large clusters (day 1−7)

C
lu

st
er

 s
iz

e

Other labels
Most frequent label

(b) Labeling of large clusters

Figure 9: Incremental analysis on day 1–7 of application data set. The labels in Figure 9(b)
have been generated 8 weeks after acquisition of application data using Kaspersky Anti-Virus.

separation, however, manifests the main advantage of behavior-based analysis over regu-
lar anti-virus tools: malware is analyzed with respect to its behavior irrespective of similar-
ities in file contents. For example, all binaries labeled BASUN share the same master host
‘all-internal.info’, but once contacting this host exhibit diverging behavior, which
ranges from failed communication (cluster 2) to retrieving Windows updates (cluster 1),
or connecting to malicious Web sites (cluster 7). Similarly, the binaries of SWIZZOR first
spawn a process of the Internet Explorer, but then proceed differently. In case of cluster 9
various binary files are downloaded and executed, while for cluster 10, data is transferred
to remote hosts via HTTP POST requests.

As a consequence, the clusters reflect different behavioral realizations of the malware
classes which are difficult to discriminate from static context alone and may only be dis-
covered by means of behavior-based analysis. The ability of modern malware to conduct
different activity based on context, remote control and downloaded payloads renders the
analysis of malware behavior vitally important for effectively updating signatures and
crafting defense mechanisms.

3.4.2 Run-time and Memory Requirements

As the last issue of the practical application of our framework, we consider its run-time
performance and memory requirements. First, we evaluate individual run-times for em-
bedding reports and computing distances in the vector space induced by q-grams. Then
we assess the run-time and memory requirements for incremental analysis of the full ap-
plication data set in comparison to regular batch analysis. All experiments are conducted
on a quad-core AMD Opteron processor with 2.4 GHz. Although the implementation of
our framework provides support for parallelization, we restrict all computations to one
core of the processor. Moreover, we omit measurements for generation of MIST reports, as
this format is naturally obtained during monitoring of malware binaries and thus induces
an insignificant overhead.

20

0 500 1000 1500
0

200

400

600

800

E
m

be
dd

ed
 r

ep
or

ts
 p

er
 s

ec
on

d

Report size (kilobytes)

Measurements
Polynomial estimate
Average

(a) Embedding of reports

0 500 1000 1500
0

100k

200k

300k

400k

D
is

ta
nc

e
co

m
pu

ta
tio

ns
 p

er
 s

ec
on

d

Report size (kilobytes)

Measurements
Polynomial estimate
Average

(b) Distance computation

Figure 10: Run-time performance for embedding of reports and distance computation. The
run-time is measured using 1,000 reports from the application data set with MIST level 2.

Figure 10(a) shows the run-time performance for embedding a sample of 1,000 reports.
Depending on the report size, between 100 to 800 reports can be processed per second
where on average a rate of 254 reports per second is achieved. This performance allows
to process around 15,000 reports per minute and is clearly sufficient for large-scale analy-
sis of malware behavior in practice. The run-time performance for distance computation
between embedded reports is shown in Figure 10(b). On average 129,000 distances can
be computed per second, which, as an example, allows to compare a report of malware
behavior against 1,000,000 prototypes of clusters in less than 8 seconds. Moreover, a sin-
gle distance computation takes around 0.0077 milliseconds and is significantly below the
performance numbers reported by Bayer et al. (2009a).

Besides run-times of individual components, we also consider the total run-time and
memory requirements for incremental analysis. Figure 10 shows the cumulative run-time
for processing the individual days of the application data set, where results for regular
clustering are presented in Figure 11(a) and for the incremental processing in Figure 11(b).
The regular clustering exhibits a steep quadratic growths, resulting in a run-time of 100
minutes for processing the seven days. By contrast, the incremental analysis allows to
compute clusters for this data within 25 minutes, thereby providing a speed-up factor of 4.
The memory consumption of both approaches is compared in Figure 11(c). The regular
clustering requires about 5 Gigabytes of memory for computing the clustering, while the
incremental approach allocates less than 300 Megabytes during analysis.

21

1 1−2 1−3 1−4 1−5 1−6 1−7
0

20

40

60

80

100

Data set size (days)

R
un

−
tim

e
(m

in
ut

es
)

Embedding of reports
Clustering

(a) Run-time (regular clustering)

1 1−2 1−3 1−4 1−5 1−6 1−7
0

20

40

60

80

100

Data set size (days)

R
un

−
tim

e
(m

in
ut

es
)

Embedding of reports
Prototype extraction
Clustering
Classification
Incremental update

(b) Run-time (incremental analysis)

1 1−2 1−3 1−4 1−5 1−6 1−7
0

1000

2000

3000

4000

5000

Data set size (days)

M
em

or
y

co
ns

um
pt

io
n

(M
b)

Regular clustering
Incremental analysis

(c) Memory consumption

Figure 11: Run-time and memory requirements on day 1–7 of application data set. The run-
times and memory are presented for regular clustering and incremental analysis.

These results demonstrate the advantages of the incremental analysis. By processing
the behavior reports in chunks, the run-time as well as memory requirements can be sig-
nificantly reduced. This renders long-term application of behavior-based analysis feasible,
for instance, as part of daily operation at a vendor of anti-malware products.

4 Related Work

Malicious software in its many forms poses a severe threat to the security of the Internet.
Therefore, this area has received a lot of attention in the research community, and many
different concepts and techniques for malware analysis have been proposed. Our contri-
bution is related to several of these approaches, as we discuss in the following.

Static analysis of malware. One of the first approaches for analysis and detection of
malicious software has been introduced by Lo et al. (1995). Malware binaries are manually
analyzed, such that tell-tale signs, indicative for malicious activity, can be extracted and
later applied for detection of other malware samples. This approach has been developed
further by Christodorescu and Jha (2003), who propose an architecture for detection of
certain malicious patterns that are resilient to common obfuscation techniques. Finally,
semantics-aware analysis of malware binaries has been devised by Christodorescu et al.
(2005) and later on extended by Preda et al. (2007, 2008).

Still, static analysis of malware binaries is largely obstructed by obfuscation techniques
which are frequently employed by attackers to thwart analysis (e.g., Linn and Debray,
2003; Szor, 2005; Popov et al., 2007; Ferrie, 2008, 2009). Although simple obfuscation may
be compensated to a certain degree, the generic analysis of obfuscated code can be shown
to be NP-hard (Moser et al., 2007a). Consequently, we apply dynamic analysis in our
framework, as behavior is more difficult to conceal than its underlying code.

Dynamic analysis of malware. To hinder static analysis of binaries the majority of cur-
rent malware makes use of binary packers and cryptors. Recently, several systems have
been proposed to generically unpack malware samples (e.g., Royal et al., 2006; Martignoni

22

et al., 2007; Dinaburg et al., 2008; Sharif et al., 2009). The common idea of all these systems
is to execute malware binaries and decide during run-time, when the samples are un-
packed, that is, all packing steps have successfully finished. The unpacked malware sam-
ples can be analyzed easier, as most obfuscation is removed. While these approaches share
concepts of dynamic and static analysis, we base our work entirely on dynamic analysis of
malware behavior, as this setting is more resilient to code obfuscation and independent of
involved unpacking solutions.

Dynamic analysis of malware has received a lot of attention in the research community.
Analysis systems such as CWSandbox (Willems et al., 2007), Anubis (Bayer et al., 2006a,b),
BitBlaze (Song et al., 2008), Norman2 or ThreatExpert3 execute malware samples within
an instrumented environment and monitor their behavior for analysis and development
of defense mechanisms. In our framework, we employ the analysis tool CWSandbox for
monitoring malware behavior, yet our approach is agnostic to the underlying sandbox, as
long as a conversion to the proposed MIST representation is feasible. The analysis output
of our framework provides the basis for timely defense against novel strains of malware
and can be coupled with several related approaches. For example, samples of discovered
malware classes can be directly used for observing current trends in malware development
(Bayer et al., 2009b), constructing efficient detection patterns (Kolbitsch et al., 2009) and
designing automata of malicious behavior (Jacob et al., 2009).

The main limitation of dynamic analysis is that typically only a single execution path is
examined. This may lead to an incomplete picture of malware activity, as particular oper-
ations might only take place under specific conditions. To overcome this limitation, Moser
et al. (2007b) propose the technique of multi-path execution. The behavior of malware sam-
ples is iteratively monitored by triggering and exploring different execution paths during
run-time. Although we have not made use of this information, multiple traces of behav-
ior can be incorporated into our approach by extending analysis from sequences to trees
and graphs. As means for efficiently learning over trees have been very recently proposed
(Rieck et al., 2010), we consider this extension a vital direction of future work.

Machine learning for malware analysis. Machine learning for classification of malware
binaries has been first studied by Schultz et al. (2001) and Kolter and Maloof (2006). Both
approaches employ string features of binary executables for training learning algorithms
and discriminating malicious and benign files. An extension of this work to unpacked
malware binaries has been recently devised by Perdisci et al. (2008). Furthermore, Stolfo
et al. (2007) propose to analyze file content for detection of malware samples embedded
within files using similar techniques. The first application of classification for malware be-
havior has been introduced by Lee and Mody (2006) and Rieck et al. (2008). We extend this
work by proposing a prototype-based classification method, which significantly advances
classification accuracy as well as efficiency.

Another line of research has focused on clustering of malware behavior for discovery
of novel malware and reduction of manual analysis effort. The first clustering system
for observed behavior has been introduced by Bailey et al. (2007) and later on extended
by Bayer et al. (2009a) to be scalable, where the system devised by Bayer et al. (2009a)

2Norman Sandbox Center: http://sandbox.norman.no
3ThreatExpert – Automated Threat Analysis: http://www.threatexpert.com/

23

provides an excellent run-time performance in practice. However, both approaches require
a single batch of malware samples and thus are limited in the overall capacity. We extend
this work and propose an incremental analysis which by combination of clustering and
classification enables iterative analysis of malware behavior in chunks of samples.

Evasion and mimicry. We propose a framework for the analysis of malicious behavior,
hence we operate in an adversarial setting. An attacker may attempt to evade and ob-
struct behavior-based analysis in different ways. Common evasion techniques include
mimicry attacks (Wagner and Soto, 2002; Kruegel et al., 2005; Fogla et al., 2006) and attacks
against the analysis system (Tan et al., 2002; Chen et al., 2008). The input for our algorithm
is based on dynamic analysis with CWSandbox. The tool is resilient to common obfus-
cation techniques designed to thwart static analysis. Thus, we assume that CWSandbox
can observe the execution of a sample within the analysis environment. Note that specific
attacks against this environment are still possible, but out of scope for this article.

The embedding using q-grams in our approach rests on work on host-based intrusion
detection (e.g., Forrest et al., 1996; Lee et al., 1997; Hofmeyr et al., 1998) which is known
to suffer from evasion and mimicry attacks (e.g., Wagner and Soto, 2002; Tan and Maxion,
2002; Tan et al., 2002). However, our framework differs from previous work in that the
granularity of q-grams depends on the considered MIST level. For levels larger than 1,
the resulting instruction q-grams comprise system calls as well as their arguments, thus
reaching beyond plain system call identifiers. This inclusion of arguments hardens our
approach against evasion techniques proposed for host-based intrusion detection. While
an attacker may still aim at masquerading as a certain malware class, he is required to
include valid system call arguments and thus triggers true malicious behavior.

Hence, the most promising evasion attack against our framework corresponds to trig-
gering fake and real malicious behavior during individual executions, similar to evasion
techniques against signature generation (Perdisci et al., 2006; Venkataraman et al., 2008).
While this attack would be effective to certain degree, it can be alleviated by means of
multi-path execution, which ultimately exposes all behavior of a malware binary to our
analysis framework and rules out possible masquerading.

5 Conclusions

Malicious software is one of the major threats in the Internet today. Many problems of
computer security, such as denial-of-service attacks, identity theft, or distribution of spam
and phishing contents, are rooted in the proliferation of malware. Several techniques for
automated analysis of malware have been developed in the last few years, ranging from
static code inspection to dynamic analysis of malware behavior. While static analysis suf-
fers from obfuscation and evasion attacks, dynamic analysis alone requires a considerable
amount of manual inspection for crafting detection patterns from the growing amount and
diversity of malware variants.

In this article, we introduce a framework to overcome this deficiency and enhance the
current state-of-the-art. Our main contribution is a learning-based framework for the au-
tomatic analysis of malware behavior. To apply this framework in practice, it suffices to
collect a large number of malware samples and monitor their behavior using a sandbox

24

environment. By embedding the observed behavior in a vector space, we are able to ap-
ply learning algorithms, such as clustering and classification, for the analysis of malware
behavior. Both techniques are important for an automated processing of malware samples
and we show in several experiments that our techniques significantly improve previous
work in this area. For example, the concept of prototypes allows for efficient clustering
and classification, while also enabling a security researcher to focus manual analysis on
prototypes instead of all malware samples. Moreover, we introduce a technique to per-
form behavior-based analysis in an incremental way that avoids run-time and memory
overhead inherent to previous approaches.

The proposed analysis framework enables automatic and efficient analysis of malware
behavior, which provides the basis for timely defense against malware development. In
combination with recent techniques for construction of detection patterns and heuristics,
learning-based analysis of malware significantly strengthens security in the arms race with
developers of malicious software.

Acknowledgements

The authors would like to thank Ulrich Bayer from Vienna University of Technology for
providing analysis results of the Anubis framework. This work has been accomplished
in cooperation with the German Federal Office for Information Security (Bundesamt für
Sicherheit in der Informationstechnik (BSI)).

Data Sets and Software

To foster research in the area of malware clustering and classification, and to enable a com-
parison of different approaches, we make the reference and application data sets available
to other researchers at http://pi1.informatik.uni-mannheim.de/malheur. Moreover,
we provide an open-source implementation of our analysis framework called Malheur at
http://www.mlsec.org/malheur.

References

M. Anderberg. Cluster Analysis for Applications. Academic Press, Inc., New York, NY, USA,
1973.

P. Bächer, M. Kötter, T. Holz, F. Freiling, and M. Dornseif. The nepenthes platform: An
efficient approach to collect malware. In Proceedings of Symposium on Recent Advances in
Intrusion Detection (RAID), pages 165–184, Hamburg, Germany, 2006. Springer.

M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian, and J. Nazario. Automated
classification and analysis of internet malware. In Proceedings of Symposium on Recent
Advances in Intrusion Detection (RAID), pages 178–197, Queensland, Australia, 2007.
Springer.

25

U. Bayer, C. Krügel, and E. Kirda. TTAnalyze: A tool for analyzing malware. In Proceedings
of Annual Conference of the European Institute for Computer Antivirus Research (EICAR),
Hamburg, Germany, April 2006a.

U. Bayer, A. Moser, C. Kruegel, and E. Kirda. Dynamic analysis of malicious code. Journal
in Computer Virology, 2(1):67–77, 2006b.

U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, behavior-based
malware clustering. In Proceedings of Symposium on Network and Distributed System Secu-
rity (NDSS), San Diego, CA, USA, 2009a.

U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. Insights into current mal-
ware behavior. In Proc. of USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET), Boston, MA, USA, 2009b. USENIX Association.

A. Beygelzimer, K. S., and J. Langford. Cover trees for nearest neighbor. In Proceedings of
International Conference on Machine Learning (ICML), pages 97–104, Pittsburgh, PA, USA,
2006. Omnipress.

J. Bezdek and L. Kuncheva. Nearest prototype classifier designs: An experimental study.
International Journal of Intelligent Systems, 16:1445–1473, 2001.

X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an understanding of
anti-virtualization and anti-debugging behavior in modern malware. In Proceedings of
Conference on Dependable Systems and Networks (DSN), Anchorage, AK, USA, 2008.

M. Christodorescu and S. Jha. Static analysis of executables to detect malicious patterns.
In Proceedings of USENIX Security Symposium, pages 12–22, Washington, DC, USA, 2003.
USENIX Association.

M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and R. E. Bryant. Semantics-aware
malware detection. In Proceedings of IEEE Symposium on Security and Privacy, pages 32–
46, Oakland, CA, USA, 2005. IEEE CS Press.

M. Damashek. Gauging similarity with n-grams: Language-independent categorization
of text. Science, 267(5199):843–848, 1995.

A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hardware virtu-
alization extensions. In Proceedings of Conference on Computer and Communications Security
(CCS), pages 51–62, Alexandria, VA, USA, 2008. ACM Press.

R. Duda, P.E.Hart, and D.G.Stork. Pattern classification. John Wiley & Sons, second edition,
2001.

P. Ferrie. Anti-unpacker tricks 2 part one, Dezember 2008.

P. Ferrie. Anti-unpacker tricks 2 part seven, June 2009.

P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee. Polymorphic Blending Attacks.
In Proceedings of USENIX Security Symposium, pages 241–256, Vancouver, BC, Canada,
2006. USENIX Association.

26

S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix processes.
In Proceedings of IEEE Symposium on Security and Privacy, pages 120–128, Oakland, CA,
USA, 1996. IEEE CS Press.

J. Franklin, V. Paxson, A. Perrig, and S. Savage. An inquiry into the nature and causes of
the wealth of internet miscreants. In Proceedings of Conference on Computer and Communi-
cations Security (CCS), pages 375–388, Alexandria, VA, USA, 2007. ACM Press.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman and Co., 1979.

T. Gonzàlez. Clustering to minimize the maximum intercluster distance. Theoretical Com-
puter Science 38, pages 293–306, 1985.

S. Harmeling, G. Dornhege, D. Tax, F. C. Meinecke, and K.-R. Müller. From outliers to
prototypes: ordering data. Neurocomputing, 69(13–15):1608–1618, 2006.

S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, 6(3):151–180, 1998.

T. Holz, M. Engelberth, and F. Freiling. Learning More About the Underground Economy:
A Case-Study of Keyloggers and Dropzones. In Proceedings of European Symposium on
Research in Computer Security (ESORICS), Saint Malo, France, 2009. Springer.

G. C. Hunt and D. Brubacker. Detours: Binary interception of Win32 functions. In Proceed-
ings of the 3rd USENIX Windows NT Symposium, pages 135–143, Seattle, WA, USA, 1999.
USENIX Association.

G. Jacob, H. Debar, and E. Filiol. Malware behavioral detection by attribute-automata
using abstraction from platform and language. In Proceedings of Symposium on Recent
Advances in Intrusion Detection (RAID), pages 81–100, Saint Malo, France, 2009. Springer.

C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X. Zhou, and X. Wang. Effective and
efficient malware detection at the end host. In Proceedings of USENIX Security Symposium,
Montreal, QC, Canada, 2009. USENIX Association.

J. Kolter and M. Maloof. Learning to detect and classify malicious executables in the wild.
Journal of Machine Learning Research, 8(Dec):2755–2790, 2006.

C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating mimicry attacks
using static binary analysis. In Proceedings of USENIX Security Symposium, Baltimore,
MD, USA, 2005. USENIX Association.

A. Lanzi, M. Sharif, and W. Lee. K-Tracer: A system for extracting kernel malware behav-
ior. In Proceedings of Symposium on Network and Distributed System Security (NDSS), San
Diego, CA, USA, 2009.

T. Lee and J. J. Mody. Behavioral classification. In Proceedings of Annual Conference of the
European Institute for Computer Antivirus Research (EICAR), Hamburg, Germany, April
2006.

27

W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix process execution traces for
intrusion detection. In Proceedings of AAAI Workshop on Fraud Detection and Risk Manage-
ment, pages 50–56, Providence, RI, USA, 1997.

C. Leita, M. Dacier, and F. Massicotte. Automatic handling of protocol dependencies and
reaction to 0-day attacks with ScriptGen based honeypots. In Proceedings of Symposium
on Recent Advances in Intrusion Detection (RAID), Hamburg, Germany, 2006. Springer.

C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance to Static
Disassembly. In Proceedings of Conference on Computer and Communications Security (CCS),
Washington, DC, USA, 2003. ACM Press.

R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: a malicious code filter. Computers & Security,
14(6):541–566, 1995.

L. Martignoni, M. Christodeorescu, and S. Jha. OmniUnpack: Automating the hidden-
code extraction of unpack-executing malware. In Proceedings of Anual Computer Secu-
rity Application Conference (ACSAC), pages 431–441, Miami Beach, FL, USA, 2007. ACM
Press.

Microsoft. Microsoft security intelligence report (SIR). Volume 7 (January – June 2009),
Microsoft Corporation, 2009.

T. Mitchell. Machine Learning. McGraw-Hill, 1997.

A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detection. In
Proceedings of Anual Computer Security Application Conference (ACSAC), Miami Beach, FL,
USA, 2007a. ACM Press.

A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware anal-
ysis. In Proceedings of IEEE Symposium on Security and Privacy, Oakland, CA, USA, 2007b.
IEEE CS Press.

K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-
based learning algorithms. IEEE Neural Networks, 12(2):181–201, 2001.

S. Omohundro. Five balltree construction algorithms. Technical Report TR-89-063, Inter-
national Computer Science Institute (ICSI), 1989.

R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif. Misleading worm signature gener-
ators using deliberate noise injection. In Proceedings of IEEE Symposium on Security and
Privacy, pages 17–31, Oakland, CA, USA, 2006. IEEE CS Press.

R. Perdisci, A. Lanzi, and W. Lee. McBoost: Boosting scalability in malware collection and
analysis using statistical classification of executables. In Proceedings of Anual Computer
Security Application Conference (ACSAC), pages 301–310, Anaheim, CA, USA, 2008. ACM
Press.

I. V. Popov, S. K. Debray, and G. R. Andrews. Binary Obfuscation Using Signals. In Pro-
ceedings of USENIX Security Symposium, Boston, MA, USA, 2007. USENIX Association.

28

F. Pouget, M. Dacier, and V. H. Pham. Leurre.com: on the advantages of deploying a large
scale distributed honeypot platform. In ECCE’05, E-Crime and Computer Conference, 29-
30th March 2005, Monaco, Mar 2005.

M. D. Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based approach to
malware detection. In Proceedings of 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Nice, France, 2007. ACM Press.

M. D. Preda, M. Christodorescu, S. Jha, and S. Debray. A semantics-based approach to
malware detection. ACM Trans. Program. Lang. Syst., 30(5), 2008.

W. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66:846–850, 1971.

K. Rieck and P. Laskov. Linear-time computation of similarity measures for sequential
data. Journal of Machine Learning Research, 9(Jan):23–48, 2008.

K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov. Learning and classification of
malware behavior. In Proceedings of Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), pages 108–125, Paris, France, 2008. Springer.

K. Rieck, T. Krueger, U. Brefeld, and K.-R. Müller. Approximate tree kernels. Journal of
Machine Learning Research, 11(Feb):555–580, 2010.

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. PolyUnpack: Automating the
hidden-code extraction of unpack-executing malware. In Proceedings of Anual Computer
Security Application Conference (ACSAC), pages 289–300, Miami Beach, FL, USA, 2006.
ACM Press.

G. Salton, A. Wong, and C. Yang. A vector space model for automatic indexing. Communi-
cations of the ACM, 18(11):613–620, 1975.

M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for detection of
new malicious executables. In Proceedings of IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 2001. IEEE CS Press.

M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse engineering of malware
emulators. In Proceedings of IEEE Symposium on Security and Privacy, Oakland, CA, USA,
2009. IEEE CS Press.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge Univer-
sity Press, 2004.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, and P. Saxena. BitBlaze: A new approach to computer security via bi-
nary analysis. In Proceedings of the International Conference on Information Systems Security
(ICISS), Hyderabad, India, 2008. Springer.

S. J. Stolfo, K. Wang, and W.-J. Li. Towards Stealthy Malware Detection, volume 27 of Advances
in Information Security, pages 231–249. Springer, 2007.

29

Symantec. Internet security threat report. Volume XIV (January – December 2008), Syman-
tec Corporation, 2009.

P. Szor. The art of computer virus research and defense. Symantec Press, 2005.

K. Tan and R. Maxion. “Why 6?” Defining the operational limits of stide, an anomaly-
based intrusion detector. In Proceedings of IEEE Symposium on Security and Privacy, pages
188–201, Oakland, CA, USA, 2002. IEEE CS Press.

K. Tan, K. Killourhy, and R. Maxion. Undermining an anomaly-based intrusion detec-
tion system using common exploits. In Proceedings of Symposium on Recent Advances in
Intrusion Detection (RAID), pages 54–73, Zurich, Switzerland, 2002. Springer.

P. Trinius, C. Willems, T. Holz, and K. Rieck. A malware instruction set for behavior-based
analysis. In Proceedings of 5th GI Conference “Sicherheit, Schutz und Zuverlässigkeit”, Berlin,
Germany, 2010. German Informatics Society.

C. van Rijsbergen. Information Retrieval. Butterworths, 1979.

S. Venkataraman, A. Blum, and D. Song. Limits of learning-based signature generation
with adversaries. In Proceedings of Symposium on Network and Distributed System Security
(NDSS), San Diego, CA, USA, 2008.

D. Wagner and P. Soto. Mimicry attacks on host based intrusion detection systems. In
Proceedings of Conference on Computer and Communications Security (CCS), pages 255–264,
Washington, DC, USA, 2002. ACM Press.

C. Willems, T. Holz, and F. Freiling. CWSandbox: Towards automated dynamic binary
analysis. IEEE Security and Privacy, 5(2), March 2007.

30

